Computer Graphics

6 - Vertex Processing 2

Yoonsang Lee
Hanyang University

Spring 2023

Midterm Exam Announcement

- Date \& time: May 1, 7:30-8:30 PM
- Place: TBA
- Scope: Lecture 2~7, Lab 2~7
- Lecture \& Lab 8 is included in the final exam scope.
- More details will be announced later.

Outline

- Projection Transformation
- Orthographic Projection
- Perspective Projection
- Viewport Transformation

Projection Transformation

Projection Transformation

Recall that...

- 1. Placing objects
\rightarrow Modeling transformation
- 2. Placing a "camera"
\rightarrow Viewing transformation (covered in the last class)
- 3. Selecting its "lens"
\rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
\rightarrow Viewport transformation

Recall: OpenGL Clip Space

- By default (with no transformation), you can draw an object anywhere in cube space with x, y, z coordinates ranging from -1 to 1 .
- This space is called clip space (or NDC space).
- Its $\mathbf{x y}$ plane is a 2D "viewport".
- Its coordinate system is normalized device coordinate (NDC).
- We will take a closer look at their meaning in later lectures.

1

Normalized Device Coordinates (NDC)

- Normalized device coordinates (NDC) is a device independent display coordinate system.
- Various display devices' size, measured in pixels, can vary.
- So, it's important to specify coordinates using units other than pixels to make the programs device independent.
- The space expressed by NDC: clip space (or NDC space)
- However, clip / NDC space are slightly different, which is covered in today's lecture.

Canonical View Volume

- Canonical view volume is a 3D volume in clip / NDC space that defines the visible region of the scene.

OpenGL
canonical view volume

Direct3D canonical view volume

- Only objects inside the canonical view volume are rendered.
- To draw objects only in the camera's view
- Not to draw objects too near or too far from the camera

Canonical View Volume

- Conventionally, NDC is a left-handed coordinate system (both in OpenGL and Direct3D).
- Viewing direction in NDC : +z direction
- In OpenGL, projection functions change the hand-ness by default - Thus view, world, model spaces use a right-handed coordinate system.

- Viewing direction in view space : -z direction
- (Direct3D use a left-handed system by default; it does not change hand-ness.)

View Volume

- However, you don't have to try to place all objects in the range -1 to +1 in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates.
- Instead, you can set up a cuboid or frustum volume of any size and draw objects inside it.
- Then this view volume (and everything inside it) is mapped (projected) into the canonical view volume.
- \rightarrow Projection transformation

Projection Transformation

- To map 3D coordinates to 2D screen coordinates,
- An arbitrary view volume is mapped to the canonical view volume.
- Mapping the 3D points of the canonical view volume onto the xy plane doesn't actually happen, because we still need the z -value of the point for "depth testing".
- Two common projection methods:
- Orthographic projection
- Perspective projection

Orthographic (Orthogonal) Projection

- View volume : Cuboid (직육면체)
- Orthographic projection : Mapping from a cuboid view volume to a canonical view volume
- Combination of scaling \& translation
\rightarrow "Windowing" transformation

* The base image is from https://jcsites.juniata.edu/faculty/rhodes/graphics/projectionmat.htm

Windowing Transformation

- Transformation that maps a point $\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right)$ in a rectangular space from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\left(\mathrm{x}_{\mathrm{h}}, \mathrm{y}_{\mathrm{h}}\right)$ to a point ($\mathrm{p}_{\mathrm{x}}{ }^{\prime}, \mathrm{p}_{\mathrm{y}}{ }^{\prime}$) in a rectangular space from ($\mathrm{x}_{1}{ }^{\prime}, \mathrm{y}_{\mathrm{l}}{ }^{\prime}$) to $\left(\mathrm{x}_{\mathrm{h}}{ }^{\prime}\right.$, $y_{h}{ }^{\prime}$)

translate

$$
\left(\begin{array}{c}
\mathrm{p}_{\mathrm{x}}^{\prime} \\
\mathrm{p}_{\mathrm{y}}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & x_{l}^{\prime} \\
0 & 1 & y_{l}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}} & 0 & 0 \\
0 & \frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x_{l} \\
0 & 1 & -y_{l} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{p}_{\mathrm{x}} \\
\mathrm{p}_{\mathrm{y}} \\
1
\end{array}\right]
$$

$$
\left(\begin{array}{c}
\mathrm{p}_{\mathrm{x}}^{\prime} \\
\mathrm{p}_{\mathrm{y}}^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}} & 0 & \frac{x_{l}^{\prime} x_{h}-x_{h}^{\prime} x_{l}}{x_{h}-x_{l}} \\
0 & \frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}} & \frac{y_{l}^{\prime} y_{h}-y_{h}^{\prime} y_{l}}{y_{h}-y_{l}} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
\mathrm{p}_{\mathrm{x}} \\
\mathrm{p}_{\mathrm{y}} \\
1
\end{array}\right)
$$

Orthographic Projection Matrix

- By extending the matrix to 3D and substituting
$-x_{h}=$ right, $x_{1}=$ left, $x_{h}{ }^{\prime}=1, x_{1}{ }^{\prime}=-1$
$-\mathrm{y}_{\mathrm{h}}=$ top, $\mathrm{y}_{\mathrm{l}}=$ bottom, $\mathrm{y}_{\mathrm{h}}{ }^{\prime}=1, \mathrm{y}_{1}{ }^{\prime}=-1$
$-\mathrm{z}_{\mathrm{h}}=-$ far, $\mathrm{z}_{\mathrm{l}}=-$ near, $\mathrm{z}_{\mathrm{h}}{ }^{\prime}=1, \mathrm{z}_{\mathrm{l}}{ }^{\prime}=-1$

$$
\mathrm{P}_{\text {orth }}=\left[\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & -\frac{\text { right }+ \text { left }}{\text { right-left }} \\
0 & \frac{2}{\text { top-bottom }} & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top-bottom }} \\
0 & 0 & \frac{-2}{\text { far-near }} & -\frac{\text { far }+ \text { near }}{\text { far-near }} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Examples of Orthographic Projection

Top

Front

Side

Orthographic and isometric projections of an object

top view

front view
2-dimensional orthographic projection

3-dimensional isometric projection
(9) 2010 Encyclopædia Britannica, Inc.

An object always stay the same size, no matter its distance from the viewer.

Properties of Orthographic Projection

- Not realistic looking
- Good for exact measurement

- Most often used in CAD, architectural drawings, etc. where taking exact measurement is important.
- Combination of scaling and translation \rightarrow Affine transformation

[Demo] Orthographic Projection

An orthographic projection demo.

http://learnwebgl.brown37.net/08 projections/create ortho/create ortho.html

- Observe the view volume (left) and rendered view (right) while dragging left, right, bottom, top, near, far sliders.

Quiz 1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Perspective Effects

- Distant objects become small.

Vanishing point: The point or points to which the extensions of parallel lines appear to converge in a perspective drawing

Perspective Projection

- View volume : Frustum (절두체)
- \rightarrow "Viewing frustum"

- Perspective projection : Mapping from a viewing frustum to a canonical view volume

Why does this mapping generate a perspective effect?

An Example of Perspective Projection

After perspective projection

An Example of Perspective Projection

Let's first consider 3D View Frustum \rightarrow 2D Projection Plane

- Consider the projection of a 3D point on the camera plane

Perspective projection

The size of an object on the screen is inversely proportional to its distance projection from camera
plane

similar triangles:

$$
\begin{aligned}
& \frac{y^{\prime}}{d}=\frac{y}{-z} \\
& y^{\prime}=-d y / z
\end{aligned}
$$

Homogeneous coordinates revisited

- Perspective requires division
- that is not part of affine transformations
- in affine, parallel lines stay parallel
- therefore not vanishing point
- therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

- Introduced $w=1$ coordinate as a placeholder

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- used as a convenience for unifying translation with linear transformation
- Can also allow arbitrary w

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

All scalar multiples of a 4-vector are equivalent

Perspective projection

to implement perspective, just move z to w:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
1
\end{array}\right] \sim\left[\begin{array}{l}
d x \\
d y \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

So far, 3D \rightarrow 2D

- What we've just seen is a story of 3D View Frustum \rightarrow 2D Projection Plane:

$$
\begin{gathered}
\text { [}\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
\end{gathered}
$$

Now, 3D \rightarrow 3D

- However, what we really have to do is 3D View Frustum \rightarrow 3D Canonical View Volume:

First, 3D View Frustum \rightarrow 3D Cuboid

- Let's first consider a viewing frustum \rightarrow a cuboid with the same near and far offset (not a canonical view volume)

- Perspective has a varying denominator-can't preserve depth z !
- Instead, let's map z values in such a way that the mapped zvalues preserve depth in the near and far planes.

3D View Frustum \rightarrow 3D Cuboid

- Let's first consider a viewing frustum \rightarrow a cuboid with the same near and far offset (not a canonical view volume)

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
-X / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
X \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
c_{0} & c_{1} & a & b \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Perspective has a varying denominator-can't preserve depth z !

3D View Frustum \rightarrow 3D Cuboid

- Note that z^{\prime} is independent of x and y, therefore $c_{0}=c_{1}=0$
- We want z depth -near \rightarrow-near, -far \rightarrow-far.
- This means $z^{\prime}(-\mathrm{n})=-\mathrm{n}, \mathrm{z}^{\prime}(-\mathrm{f})=-\mathrm{f}$, where $\mathrm{z}^{\prime}(\cdot)$ is defined as:

$$
X=a z+b \quad z^{\prime}(z)=-X / z=-\frac{a z+b}{z}
$$

- There are 2 unknowns a, b and 2 equations $z^{\prime}(-\mathrm{n})=$ $-\mathrm{n}, \mathrm{z}^{\prime}(-\mathrm{f})=-\mathrm{f}$, so we can solve it:
- $\rightarrow \mathrm{a}=\mathrm{f}+\mathrm{n}, \mathrm{b}=\mathrm{fn}$ (try it)

Final: 3D View Frustum \rightarrow 3D Canonical View Volume

- By substituting d with $\mathrm{n}, \mathrm{P}_{\mathrm{f} 2 \mathrm{c}}=\left[\begin{array}{cccc}n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & f+n & f n \\ 0 & 0 & -1 & 0\end{array}\right]$
- Now the remaining work is mapping the cuboid to a canonical view volume: $\mathbf{P}_{\text {orth }}$
- Viewing frustum \rightarrow cuboid \rightarrow canonical view volume: $\mathrm{P}_{\text {pers }}=\mathrm{P}_{\text {orth }} \mathrm{P}_{\mathrm{f} 2 \mathrm{c}}$

Perspective Projection Matrix

- $\mathrm{P}_{\text {pers }}=\mathrm{P}_{\text {orth }} \mathrm{P}_{\mathrm{f} 2 \mathrm{c}}$

$$
=\left(\begin{array}{cccc}
\frac{2}{r-1} & 0 & 0 & -\frac{r+t}{r-1} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & f+n & f n \\
0 & 0 & -1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{r--} & 0 & \frac{r+t}{r-1} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Note on Mapped Depth (Z' value)

- This perspective projection results in non-linear mapping of the original depth values (z values) to

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
\frac{z^{\prime}}{1}
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
-X / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
X \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{x-1} & 0 & \frac{r+1}{5-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-y+n)}{5-n} & \frac{-2 f n}{1-n} \\
0 & 0 & -1 & 0
\end{array}\right)\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$ the range $(-1,+1)$.

- This makes more precision for z values close to the camera and less precision for z values farther from the camera.

Perspective Division, Clip / NDC Space

in NDC space
in camera space

- Clip space is a 4D homogeneous coordinate system space that represents the scene after being transformed by the vertex shader.
- NDC space is a 3D coordinate system space that represents the scene after being transformed from clip space by the perspective division.
- Actually, both spaces represent the same "space"(visible region), a cube with a range of [-1,1], but in NDC space the fourth dimension (w) has been removed.

[Demo] Perspective Projection - frustum

http://learnwebgl.brown37.net/08 projections/create frustum/create frustum.html

- Observe the view volume (left) and rendered view (right) while dragging left, right, bottom, top, near, far sliders.

[Demo] Perspective Projection - perspective

http://learnwebgl.brown37.net/08 projections/create perspective/create perspective.html

- Observe the view volume (left) and rendered view (right) while dragging fovy, aspect, near, far sliders.
- Which one is more convenient, frustum or perspective?

Quiz 2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Viewport Transformation

Viewport Transformation

Recall that...

- 1. Placing objects
\rightarrow Modeling transformation
- 2. Placing a "camera"
\rightarrow Viewing transformation
- 3. Selecting its "lens"
\rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
\rightarrow Viewport transformation

Viewport Transformation

- Viewport: a rectangular viewing region of screen
- So, viewport transformation is also a kind of windowing transformation.

Viewport Transformation Matrix

- In the windowing transformation matrix,
- By substituting $\mathrm{x}_{\mathrm{h}}, \mathrm{x}_{\mathrm{l}}, \mathrm{x}_{\mathrm{h}}{ }^{\prime}, \ldots$ with corresponding variables in viewport transformation,

$$
\mathrm{T}_{\mathrm{vp}}=\left[\begin{array}{cccc}
\frac{\text { width }}{2} & 0 & 0 & \frac{\text { width }}{\text { heith }}+x_{\min } \\
0 & \frac{\text { height }}{2} & 0 & \frac{\text { height }}{2}+y_{\min } \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Lab Session

- Now, let's start the lab today.

